Патент на изобретение сварка

Изобретение относится к импульсной дуговой сварке плавящимся электродом в автоматическом и полуавтоматическом режиме и может быть использовано для сварки плавящимся электродом порошковой проволокой с покрытием и без него сплошного сечения в среде углекислого газа, аргона, длинной дугой в различных пространственных положениях. На нормально горящую дугу накладывают кратковременные импульсы сварочного тока для отрыва капли расплавленного металла электрода и переноса ее в сварочную ванну. В интервале между импульсами, непосредственно перед каждым импульсом ток нормально горящей дуги ограничивают в пределах 20-30 А в период времени 1-3 мс. В результате получают устойчивый перенос электродного металла и снижается разбрызгивание электродного металла. 1 ил.

Рисунки к патенту РФ 2191665

Изобретение относится к импульсной дуговой сварке в автоматическом и полуавтоматических режимах и может быть использовано для сварки плавящимся электродом, порошковой самозащитной проволокой и голой самозащитной проволокой в среде углекислого газа, аргона длинной дугой в различных пространственных положениях.

Известен способ импульсной дуговой сварки плавящимся электродом, при котором на основной ток процесса сварки накладываются импульсы тока (Импульсно-дуговая сварка плавящимся электродом с программным регулированием процесса. Б.Е. Патон, А.Г. Потапьевский, Н.В. Подола. Автоматическая сварка, 1, 1964г., стр. 1-6).

В связи с тем, что больше не было обнаружено технических решений аналогичного назначения, описанный способ принят за прототип при составлении настоящей заявки.

Недостатком при известном способе сварки является то, что капля электродного металла, образующаяся во время между импульсами, занимает с электродом несоосное положение, и при наложение следующего импульса тока расширяющийся столб дуги выталкивает каплю на периферию столба дуги и после отрыва капли происходит несоосный переход, что приводит к выбросам капли за пределы сварочной ванны, а это приводит к повышенному разбрызгиванию электродного металла и, как следствие, к повышенному набрызгиванию и повышенному расходу электродного металла.

Задача изобретения — получение устойчивого переноса электродного металла при импульсной дуговой сварке длинной дугой в среде защитных газов, снижение разбрызгивания электродного металла.

Поставленная задача достигается тем, что в способе импульсной дуговой сварки плавящимся электродом, при котором на нормально горящую дугу накладывают кратковременные импульсы сварочного тока, для отрыва капли расплавленного металла электрода и переноса ее в сварочную ванну, в интервале между импульсами, непосредственно перед каждым импульсом, ток нормально горящей дуги ограничивают в пределах 20-30А в период времени 1-3 мс.

Заявляемый способ характеризуется наличием существенного отличительного признака: «в интервале между импульсами, непосредственно перед каждым импульсом, ток нормально горящей дуги ограничивают в пределах 20-30А в период времени 1-3 мс».

Наличие указанного признака позволяет занять капле соосное с электродом положение, так как любое принудительное уменьшение тока дуги после формирования капли на конце электрода будет способствовать уменьшению статического давления и скорости плазменного потока, а следовательно, приближению капли к сварочной ванне (Изменение характеристик сварочной дуги в процессе формирования капли при сварке плавящимся электродом в СO2. В.С. Мечев, канд. техн. наук, Л. И. Сычев, инж. (Ин-т электросварки им Е.О. Патона АН УССР), В.С. Слободенюк, А. Ж. Жайнаков, кандидаты физ.-мат. наук (Респ. межвуз. вычисл. центр Минвуза КиргССР), В.С. Энгельшт), и при последующем наложении импульса капля расплавленного металла электрода втягивается в расширяющийся столб дуги и под действием электродинамических сил переходит соосно столбу дуги в сварочную ванну, а это предотвращает выброс капли за пределы сварочной ванны.

На чертеже представлены графики тока и напряжения при импульсном питании согласно предлагаемому способу.

Условные обозначения, используемые в графиках,:
I — ток;
U — напряжение;
t — время;
Iи — ток импульса;
Iг — ток нормально горящей дуги;
Iп — ток паузы;
Uп — напряжение паузы;
Uи — напряжение импульса;
Uг — напряжение нормально горящей дуги;
tи— время импульса;
tг — время горения нормально горящей дуги;
tп — время паузы.

Предлагаемый способ осуществляется следующим образом.

На интервале времени tг горит дуга при нормальном токе. На интервале времени tп ток дуги Iп ограничен в пределах 20-30А. В это время за счет подачи электрода происходит движение капли к соосному положению с электродом и движение сварочной ванны навстречу электроду вследствие уменьшения газодинамического давления из-за резкого снижения тока. В период tи на сварочную дугу накладываются кратковременные импульсы тока Iи=(300-1200А), в результате чего столб дуги расширяется и капля расплавленного металла электрода втягивается в столб дуги, происходит отрыв капли электродного металла и направленный перенос капли после отрыва, соосно столбу дуги, в сварочную ванну. В период tг электрод интенсивно плавится и на торце образуется капля расплавленного металла, которая за счет силового воздействия сварочной дуги оттесняется от торца электрода в сторону. После окончания tг тока сварочный ток ограничивается в пределах 20-30А на 1-3 мс, вследствие чего уменьшается воздействие сварочной дуги на каплю расплавленного электродного металла и капля начинает принимать соосное положение на торце электрода, далее процесс повторяется.

Благодаря осуществлению этого способа обеспечивается большая квазистабильность процесса на стадии формировании капли, стабилизируются начальные условия переноса электродного металла в ванну и улучшается качество сварного шва во всех пространственных положениях.

Проведенные лабораторные, а затем и промышленные испытания показали высокую эффективность заявленного способа, легкость к автоматизированию, простоту применяемого оборудования, а также возможность промышленного применения.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Способ импульсной дуговой сварки плавящимся электродом, при котором на нормально горящую дугу накладывают кратковременные импульсы сварочного тока для отрыва капли расплавленного металла электрода и переноса ее в сварочную ванну, отличающийся тем, что в интервале между импульсами, непосредственно перед каждым импульсом ток нормально горящей дуги ограничивают в пределах 20-30 А в период времени 1-3 мс.

Способ изготовления труб сваркой

Владельцы патента RU 2637039:

Изобретение может быть использовано для сварки толстостенных металлоконструкций, собранных между собой встык, в частности, при изготовлении стальных прямошовных труб для магистральных газо- и нефтепроводов с использованием лазерной или гибридной лазерно-дуговой сварки. Кромки трубной заготовки соединяют с использованием лазерной или гибридной лазерно-дуговой сварки в одну сварочную ванну. Сварку осуществляют при перемещении трубной заготовки относительно неподвижной сварочной головки в горизонтальной плоскости с введением в сварочную ванну ультразвуковых колебаний на протяжении всего цикла сварки. Ультразвуковой волновод устанавливают за лазерным лучом на расстоянии не более 50 мм от сварочной ванны, которое поддерживают в процессе сварки посредством скользящего контакта. Между волноводом и поверхностью трубы наносят контактную жидкость в виде воды или глицерина. Способ обеспечивает повышение качества сварного шва за счет снижения скорости кристаллизации металла в парогазовом канале, исключающего образование нежелательных закалочных структур в металле сварного шва. 1 з.п. ф-лы, 1 ил.

Изобретение относится к способу изготовления стальных прямошовных труб для магистральных газо- и нефтепроводов с использованием лазерной или гибридной лазерно-дуговой сварки.

Лазерная или гибридная лазерно-дуговую сварка предполагает «кинжальное» проплавление в свариваемом изделии и получение сварного шва, имеющего большое отношение глубины проплавления к ширине сварного шва. Такой характер проплавления лазерным лучом обусловлен физическими особенностями, которые протекают в сварочной ванне во время действия мощного лазерного излучения. При действии лазерного луча в точке его контакта со свариваемым материалом образуется узкая и глубокая полость (парогазовый канал), внутри которой под большим давлением находятся различные газы, а вокруг данная полость окружена расплавленным металлом. В ходе сварки при отдалении лазерного луча металл в сварочной ванне начинает остывать, парогазовый канал становится нестабильным и происходит его коллапс схлопывание, когда металл расплава в сварочной ванне начинает заполнять парогазовый канал.

Таким образом, лазерная или гибридная лазерно-дуговая сварка в одну ванну характеризуется высокой скоростью остывания металла (более 150°C/сек) вследствие низкой погонной энергии сварки и других причин. По этой причине расплавленный металл кристаллизуется раньше, чем успевает заполнить всю полость парогазового канала, в результате чего в сварном шве могут образовываться полости, что является браковочным признаком и недопустимо.

Особенно остро данный негативный эффект проявляется при лазерной и лазерно-дуговой сварке металлов большой толщины (от 15 мм и выше). Также при сварке с использованием лазерного луча и характерных для этого процесса скоростях охлаждения металла расплава, которые могут достигать 150-190°C/сек, происходит образование закалочных структур в металле шва, таких как троостит и сорбит, которые имеют высокую твердость более 300 HV10. Необходимо отметить, что при изготовлении сварных труб большого диаметра при сварке не допускается образование закалочных структур в сварных швах, а твердость не должна превышать 300 HV10. В противном случае закалочные структуры приведут к снижению вязкопластических характеристик сварных швов и росту хрупкости металла шва при низких температурах, что не допустимо в трубном производстве.

Из уровня техники известно техническое решение, относящееся к способу лазерной сварки толстостенных металлических изделий (патент RU №2063853) с дополнительным воздействием на расплавленный металл сварочной ванны.

Известный способ позволяет сваривать толстостенные металлические изделия за счет нагрева (воздействия) лазерным излучением стыка свариваемых деталей до расплава с последующим его охлаждением, при этом на расплав воздействуют пронизывающим вращающимся магнитным полем, образующим углубление в расплаве и обнажающим дно сварочной ванны, на которое воздействуют лазерным излучением. Лазерный луч действует на дно сварочной ванны, непрерывно увеличивая глубину проплавления.

Следует отметить, что листовой прокат, применяемый при изготовлении сварных труб, зачастую имеет величину остаточной намагниченности, достигающую 30 Гаусс и более. Создаваемое магнитное поле в известном изобретении еще более намагнитит свариваемые кромки, что в последующем негативно повлияет на сварку заполняющих (облицовочных) швов, также на качество неразрушающего контроля сварного шва и других отделочных операций.

Таким образом, предлагаемое изобретение решает техническую задачу повышения качества сварного шва за счет снижения скорости кристаллизации металла в парогазовом канале, исключающего образование нежелательных закалочных структур в металле сварного шва.

Способ изготовления труб сваркой включает воздействие на стык кромок трубной заготовки лазерным лучом при лазерной или гибридной лазерно-дуговой сварке в одну сварочную ванну при введении в сварочную ванну ультразвуковых колебаний на протяжении всего цикла сварки.

Сущность заявляемого способа поясняется следующим образом.

Лазерный луч отдельно или в комбинации с электрической дугой действует на металлические кромки трубной заготовки и расплавляет металл в сварочной ванне. При введении ультразвуковых колебаний в сварочную ванну одновременно с процессом сварки металл расплава перемешивается, и скорость его кристаллизации заметно снижается. Эти явления приводят к увеличению времени застывания металла без образования пор и несплавлений за счет полного заполнения расплавленным металлом парогазового канала при его схлопывании.

Из уровня техники известно воздействие ультразвуком на расплав металла.

Например, из книги «Внепечная обработка чугуна и стали» (автор В.А. Кудрин, М., Металлургия, 1992) известно введение ультразвуковых колебаний в расплав металла в промежуточном ковше и кристаллизаторе. Энергия ультразвука, воздействующая на расплав, изменяет кинетику процесса, при этом наблюдается усиление перемешивания жидкой фазы, обламывание растущих кристаллов. Данный прием позволяет оптимизировать микроструктуру разливаемой стали путем дробления зерен на более мелкие, что в дальнейшем обеспечит высокие показатели при механических испытаниях стали. Однако описываемая в указанной книге способность ультразвука дробить дендриты при кристаллизации металла при лазерной или лазерно-дуговой сварке теряет свою ценность. Лазерная или лазерно-дуговая сварка из-за узконаправленного действия лазерного луча характеризуется интенсивной кристаллизацией металла сварочной ванны, и дендриты при остывании металла шва просто не успевают вырасти до той величины, при которой бы они негативно сказывались на механических свойствах сварных соединений.

Другим источником известности влияния ультразвука на расплав металла является описание к патенту RU 87380 на полезную модель, в котором раскрыто воздействие ультразвука на жидкую сварочную ванну перед фронтом кристаллизации и в металл после фронта кристаллизации сварного шва. Необходимо отметить, в указанном патенте воздействие ультразвуковых колебаний используется при электродуговой сварке в среде защитных газов или под флюсом, которая характеризуется большими тепловложениями в металл и образованием обширной зоны термического влияния. Вследствие указанных факторов сварной шов испытывает огромные остаточные напряжения, а медленная скорость кристаллизации сварочной ванны провоцирует неконтролируемый рост дендритов в микроструктуре сварных швов, что негативно скажется на уровне ударной вязкости металла сварного шва. При лазерной и лазерно-дуговой сварке плотность энергии настолько велика, а зона теплового воздействия настолько малая, что остаточных напряжений швы практически не испытывают и в их релаксации нет надобности. При этом скорость охлаждения при гибридной лазерно-дуговой сварке, наоборот, велика — более 100°C/сек, следовательно, дендриты не успевают вырасти и нет необходимости дробить микроструктуру металла.

Таким образом, введение ультразвуковых колебаний в расплав при расплавлении кромок трубной заготовки с использованием технологий лазерной или гибридной лазерно-дуговой сварки проявляет иные свойства по сравнению с указанными выше.

При введении ультразвуковых колебаний в расплав при расплавлении кромок трубной заготовки с использованием технологий лазерной или гибридной лазерно-дуговой сварки, характеризующихся узконаправленным действием лазерного луча и высококонцентрированным введением энергии, снижается скорость кристаллизации металла шва до 80-100°C, исключающая рост дендритов. При этом авторами установлено, что снижение скорости остывания металла расплава при лазерной или лазерно-дуговой сварке, вызванное воздействием ультразвука, хотя бы на 40-50°C, позволит избежать образования закалочных хрупких структур типа троостита и сорбита в сварном шве и также приведет к сохранению его качества.

Заявляемый способ поясняется с помощью схематичного чертежа.

На чертеже позициями обозначены:

Смотрите так же:  Заявление на апелляцию образец

1 — ультразвуковой генератор;

3 — трубная заготовка;

4 — лазерный луч;

5 — дуговая горелка;

6 — расплав металла;

7 — контактная жидкость.

Предлагаемый способ лазерной и лазерно-дуговой сварки труб предполагает одновременно в процессе сварки вводить в сварочную ванну ультразвуковые колебания с использованием необходимого оборудования.

Генератор 1 передает колебания ультразвука на волновод 2, который устанавливается под прямым углом к поверхности трубной заготовки 3 непосредственно за лазерным лучом 4 либо за лазерным лучом с дуговой горелкой 5 на расстоянии, равном не более 50 мм. При сварке трубна заготовка 3 перемещается в горизонтальной плоскости относительно неподвижной сварочной головки (не показана), а ультразвуковой волновод 2 посредством скользящего контакта на протяжении процесса сварки остается на удалении от сварочной ванны 6 на расстоянии до 50 мм. Между ультразвуковым волноводом 2 и трубной заготовкой 3 наносится контактная жидкость7 (вода или глицерин) для лучшей передачи ультразвуковых колебаний в сварочную ванну 6.

Использование заявляемого способа позволяет минимизировать несплавления и образование полостей в сварных швах после лазерной или лазерно-дуговой сварки, а также избежать образования хрупких закалочных структур в сварном шве.

1. Способ изготовления стальных прямошовных труб для магистральных газо- и нефтепроводов, включающий соединение кромок трубной заготовки с использованием лазерной или гибридной лазерно-дуговой сварки в одну сварочную ванну, отличающийся тем, что сварку осуществляют при перемещении трубной заготовки относительно неподвижной сварочной головки в горизонтальной плоскости с введением в сварочную ванну ультразвуковых колебаний на протяжении всего цикла сварки, при этом ультразвуковой волновод устанавливают за лазерным лучом на расстоянии не более 50 мм от сварочной ванны, которое поддерживают в процессе сварки посредством скользящего контакта, причем между волноводом и поверхностью трубы наносят контактную жидкость.

2. Способ по п.1, отличающийся тем, что используют контактную жидкость в виде воды или глицерина.

способ многослойной сварки труб

Изобретение относится к способу сварки труб большого диаметра, в частности к сварке сформованных цилиндрических заготовок для улучшения эксплуатационных характеристик труб и повышения производительности сварки. Техническим результатом изобретения является повышение процесса изготовления труб, снижение погонной энергии сварки, уменьшение зоны термического влияния на основной металл, повышение механических свойств металла шва и околошовной зоны, уменьшение уровня остаточных напряжений, улучшение геометрии трубы и формы шва. Технический результат достигается введением дополнительной операции — наложением рабочего корневого шва минимальной ширины и с максимальным проплавлением притупления кромок. При выполнении рабочего корневого шва полностью переваривают сваренный до него технологический шов. После этого накладывают рабочие внутренний и наружный швы, перекрывающие корневой шов с обеих сторон. 4 ил.

Рисунки к патенту РФ 2511191

Изобретение относится к производству сварных труб большого диаметра, а именно к сварке сформованных цилиндрических заготовок.

Существующими нормативными документами (СНиП 2.05.06-85, раздел 8, «Расчет трубопроводов на прочность и устойчивость»; Технические условия API 5L, 44 издание, октябрь 2007 г., пункт 8.4.; Международный стандарт ISO 3183, пункт 8.4.) предусмотрена так называемая трехслойная сварка труб, которая состоит из следующих операций:

— сварка технологического шва в сборочносварочном стане, где производится стыковка кромок заготовки и наложение прихваточного шва по всей длине трубы с целью их фиксации и предотвращения их перемещения друг относительно друга при последующих сварочных операциях во избежание образования «горячих трещин»;

— сварка первого рабочего шва (как правило, на внутренних станах), при которой стенка заготовки проплавляется примерно наполовину и заполняется разделка кромок с той стороны, где производится сварка;

— сварка второго рабочего шва с противоположной стороны стенки трубы, при этом шов должен перекрыть первый рабочий, как минимум, на несколько миллиметров и заполнить соответствующую разделку. Технологический шов должен полностью переплавиться рабочими.

При существующей технологии, особенно на толстых, более 25 мм, стенках трубы для того, чтобы проплавить их на всю глубину, требуется большая погонная энергия, количество дуг, работающих на одну сварочную ванну, возрастает до пяти, скорость сварки приходится уменьшать, иногда она выполняется в несколько проходов, что уменьшает производительность.

Но, самое главное, значительная погонная энергия вызывает расширение зоны термического влияния, где ухудшаются структура и механические свойства основного металла в околошовной области. Кроме того, увеличивается влияние термодеформационных процессов, изменяющих геометрию трубы и увеличивающих уровень остаточных напряжений. Все это негативно сказывается на работоспособности трубы, как конструкционного элемента.

Техническим результатом предлагаемого способа является повышение производительности процесса изготовления труб, снижение погонной энергии сварки, уменьшение зоны термического влияния, повышение механических свойств металла шва и околошовной зоны, уменьшение уровня остаточных напряжений, улучшение геометрии трубы и формы шва.

Технический результат достигается тем, что в способе многослойной сварки труб большого диаметра, в котором после стыковки кромок накладывают технологический (прихваточный) шов, затем накладывают внутренний шов и наружный швы, согласно изобретению, после сварки технологического (прихваточного) шва накладывают основной рабочий шов, который полностью переваривает технологический (прихваточный) шов, максимально глубоко проплавляя притупление кромок, а затем с минимальной погонной энергией накладывают внутренний и наружный швы, которые термообрабатывают основной рабочий шов и заполняют разделку кромок, окончательно формируя поверхность шва трубной заготовки.

Основной рабочий шов варится лазерной или гибридной (сочетающей лазерную и дуговую в среде защитного газа) сваркой и может производиться на том же сборочносварочном стане, что и технологический.

Высокая концентрация излучения, присущая лазерной сварке (10 10 -10 12 Вт/см 2 ), обеспечивает минимальную ширину шва, исчисляемую единицами миллиметров и глубину проплавления до 20 мм. Это обуславливает, как минимум, на порядок снижение погонной энергии сварки и уменьшение зоны термического влияния более чем в 2 раза и, как следствие — минимальные термическую деформацию околошовной зоны и уровень остаточных напряжений, стабильность механических свойств за счет уменьшения разупрочнения основного металла.

Внутренний и наружный швы, перекрывающие основной рабочий шов, варятся дуговой сваркой, на уменьшенную глубину, по сравнению с прототипом, поэтому не требуют увеличенной погонной энергии. Кроме того, при наложении внутреннего и наружного шва происходит термическая нормализация металла основного шва и формируются поверхности шва с обеих сторон, характеризующиеся уменьшенной шириной и усилением, что снижает механическую концентрацию напряжений на границах перехода к основному металлу трубы.

Способ осуществляется следующим образом (рис.1): после формовки трубной заготовки и стыковки кромок накладывают первый прихваточный шов дуговой сваркой, фиксируя кромки относительно друг друга, затем с применением лазерной сварки накладывают основной рабочий шов, полностью переваривая прихваточный шов, проплавляя ширину кромок, но, не заполняя разделку кромок, после чего с помощью дуговой сварки накладывают внутренний шов, заполняющий разделку кромок внутри трубы, и наружный шов, заполняющий разделку кромок снаружи трубы.

Предлагаемый способ позволяет значительно уменьшить погонную энергию при сварке толстостенных труб, повысить механические свойства металла шва и околошовной зоны и избежать возможности появления горячих трещин за счет предварительной операции наложения технологического шва.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Способ многослойной сварки труб большого диаметра, включающий стыковку кромок, наложение прихваточного шва, наложение внутреннего шва и наружного шва, отличающийся тем, что сварку прихваточного шва выполняют дуговой сваркой, после чего лазерной или гибридной лазернодуговой сваркой накладывают основной рабочий шов с переплавлением прихваточного шва и проплавлением притупления кромок на глубину до 20 мм, а затем дуговой сваркой накладывают внутренний и наружный швы для заполнения разделки.

Патент на изобретение сварка

  1. Главная
  2. Реестр патентов

Последние новости

(21), (22) Заявка: 2007134713/02, 19.09.2007

(24) Дата начала отсчета срока действия патента:
19.09.2007

(56) Список документов, цитированных в отчете о
поиске: SU 1673949 A1, 30.08.1991. RU 2196668 C1, 20.01.2003. RU 2138057 С1, 20.09.1999. RU 2124238 С1, 27.12.1998. ГУЛЯЕВ А.И. Технология и оборудование контактной сварки. — М.: Машиностроение, 1985, с.217-219.

Адрес для переписки:
445008, Самарская обл., г. Тольятти, Матросова, 42, кв.52, В.Г.Антонову

(72) Автор(ы):
Антонов Виталий Георгиевич (RU),
Меньшиков Геннадий Аркадьевич (RU)

(73) Патентообладатель(и):
Антонов Виталий Георгиевич (RU),
Меньшиков Геннадий Аркадьевич (RU)

(54) СПОСОБ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ СВАРНЫХ КОНСТРУКЦИЙ

Изобретение относится к области металлургии, в частности к способу неразрушающего контроля сварных соединений, выполненных точечной или рельефной или шовной контактной сваркой, и может быть использовано при контроле качества сварных конструкций ответственного назначения из алюминиевых и титановых сплавов. Осуществляют напыление на поверхность, по крайней мере, одной из свариваемых деталей порошка материала-свидетеля, сварку и последующий контроль. В качестве порошка материала-свидетеля используют порошок из тугоплавкого материала с более высокой плотностью, чем плотность материала свариваемых деталей. Время напыления устанавливают не превышающим 0,1 с. Сварку осуществляют в течение 48 часов с момента напыления порошка материала-свидетеля на свариваемую деталь при соблюдении следующего соотношения: 0,8 >n>0,2 , где =(dя/dч) 2 ; dя — диаметр ядра сварной точки, который выбирают в зависимости от наименьшей толщины сварного соединения, мм; dч — диаметр частиц напыляемого порошка, мм; n — число частиц порошка, приходящихся на площадь, ограниченную диаметром ядра сварной точки. В результате получают стабильное и требуемое качество соединения. 4 ил.

Изобретение относится к неразрушающим методам контроля и может быть использовано для контроля размеров и качества сварных соединений, выполненных точечной, рельефной и шовной контактной сваркой изделий из различных конструкционных металлов и их сплавов.

В настоящее время известен способ введения материала-свидетеля (МС) в нахлестку между заготовками в виде покрытия из грунта АЛГ-12 или эмали ЭТ-63 с замешанным порошком (А.А.Чакалев, Г.П.Царьков «Повышение эффективности контроля диаметра точки при контактной сварке с помощью материалов-свидетелей». // Сварочное производство, 5, 1970 г., стр.27-28), аналог.

Недостатками данного способа являются неравномерность распределения тугоплавкого порошка по поверхности нахлестки, ограничение по интервалу времени между нанесением покрытия и сваркой (24 часа).

Известен также способ введения материалов свидетелей в форме ленты из сплава АМц с закатанным внутри слоем порошка вольфрама (Ильин Б.В и др. «Новые материалы-свидетели для контроля качества точечной и роликовой сварки алюминиевых и магниевых сплавов». // Автоматическая сварка, 10, 1972 г., стр 65-67).

Недостатками данного способа являются высокая трудоемкость изготовления ленты и сложность получения целостности внешнего слоя из сплава АМц.

Также известен способ введения материалов-свидетелей в виде лент, содержащих (в мас.%): серебро 10, алюминий — остальное; иттрий 12,3, хром 0,6, алюминий — остальное (Ильин Б.В и др. «Новые материалы свидетели для контроля качества точечной и роликовой сварки алюминиевых и магниевых сплавов». // Автоматическая сварка, 10, 1972 г., стр.65-67).

Недостатками данных МС являются использование дорогостоящих материалов, большая трудоемкость при изготовлении лент, увеличение массы конструкции.

Известен способ неразрушающего контроля сварных соединений, включающий нанесение на одну из деталей материала-свидетеля, сварку и последующий контроль сварных соединений магнитными методами (А.с. 1673949 «Способ неразрушающего контроля сварных соединений», G01N 27/84, 1991 г.), прототип.

Недостатком данного способа являются сложность получения качественной картины сварного соединения при использовании рентгеноконтрастных материалов, увеличение электрического сопротивления на участке электрод-электрод, вследствие роста оксидных пленок.

При обычном плазменном или газопламенном напылении частиц металлов и их сплавов на поверхность деталей не удается получить стабильного качества и сформировать ядро точки из-за чрезмерно высоких величин и разброса электрического сопротивления в контакте деталь-деталь. Это вызвано высокой плотностью покрытий и образованием неравномерной толщины оксидных пленок на поверхности напыляемых деталей.

Известные способы нанесения частиц на поверхность деталей не гарантируют получение требуемой плотности и качества покрытия.

Задачей предлагаемого изобретения является устранение указанных выше недостатков.

Технический результат, достигаемый при реализации предлагаемого изобретения, заключается в повышении стабильности и производительности получения сварных конструкций, проведении качественного неразрушающего контроля сварного соединения и определении достоверных границ сварной точки.

Указанный технический результат достигается за счет того, что перед сваркой на поверхность, как минимум, одной детали напыляется порошок МС, проводится сварка и последующий контроль. При этом в качестве МС используется порошок из тугоплавкого материала с более высокой плотностью, чем материал свариваемых деталей, время нанесения частиц не превышает 0,1 с, а сварку осуществляют в течение 48 часов с момента нанесения порошка материала-свидетеля на деталь при соблюдении следующего соотношения плотности покрытия:

0,8 >n>0,2 ,

где =(dя/dч) 2

dя — диаметр ядра сварной точки, выбирается в зависимости от наименьшей толщины в свариваемом пакете;

dч — диаметр частиц, напыляемых на свариваемую деталь;

n — число частиц, приходящихся на площадь, ограниченную диаметром ядра сварной точки.

Заявленное изобретение иллюстрируется следующими чертежами, где: на фиг.1 показаны схемы точечной, рельефной и шовной контактной сварки; на фиг.2 — схема распределения тугоплавких частиц порошка в ядре точек при точечной, рельефной и шовной сварке; на фиг.3 — схема рентгеновского контроля и вид распределения частиц порошка в сварном соединении; на фиг.4. показано изменение электрического сопротивления на участке электрод-электрод (Rээ) в зависимости от времени между операциями нанесения материала-свидетеля на деталь и сваркой.

Способ осуществляется следующим образом. Перед сваркой, после подготовки поверхности двух деталей 1 (фиг.1), на внутреннюю поверхность нахлестки одной из деталей напыляют расчетную дозу порошка 2, например, из тугоплавкого материала высокой плотности W (WC+WC2), посредством плазменного или газопламенного напыления при ограниченном времени воздействия высокой температуры на поверхность детали.

В качестве факторов, оказывающих влияние на стабильность качества соединения, рассматривать наличие заданного количества частиц порошка в зоне сварки, а также временные параметры напыления (tн) и хранения деталей с покрытиями от момента напыления до начала сварки (tв). Ограничение данных параметров позволяет повысить качество сварных соединений. Ограничение времени, в течение которого наносится порошок на единицу поверхности нахлестки (tн), позволяет снизить вероятность образования толстых оксидных пленок. А ограничение времени от момента нанесения порошка на деталь до окончания сварки (tв) позволяет избежать чрезмерно большого увеличения электрического сопротивления на участке электрод-электрод

Смотрите так же:  Разбойник ликвидация ветка

(Rээ) (фиг.4). Опытным путем установлено, что при увеличении сопротивления Rээ более 65-70 мкОм наблюдается нестабильное формирование сварного соединения.

Таким образом, для получения стабильного и требуемого качества соединения необходимо, чтобы время полета элементарной частицы составляло менее 0,1 с, сварку осуществляли в течение 48 часов с момента нанесения порошка материала-свидетеля на деталь при соблюдении следующего соотношения плотности покрытия:

0,8 >n>0,2 ,

где =(dя/(dч) 2 ;

dя — диаметр ядра точки, выбирается в зависимости от наименьшей толщины в свариваемом пакете;

dч — диаметр частиц, напыляемых на свариваемую деталь;

n — число частиц, приходящихся на площадь, ограниченную диаметром ядра точки.

После нанесения порошка детали собирают внахлестку (поверхность с покрытием находится внутри нахлестки), размещают их между электродами (роликами) сварочной машины, сжимают детали и пропускают сварочный ток.

В процессе сварки происходит перемешивание расплавленного металла ядра и находящиеся в нем частички тугоплавкого металла под действием магнитоэлектрогидродинамических процессов перемещаются на периферию ядра точки. После сварки всей конструкции сварные швы повергают рентгенографическому контролю с помощью рентгеновской пленки 3 (фиг.3), что позволяет получить четко выраженное распределение частиц МС на периферии сварной точки и определить диаметр ядра точки или ширину шва (или его отсутствие), а также отметить наличие дефектов типа несплошностей.

Пример 1. При сварке листов из сплава АМгб толщиной 0,8+0,8 мм нормированный диаметр точки должен быть 4 мм. Диаметр напыляемых частиц материала-свидетеля, выполненного из сплава Al-8 Y, составляет 50 мкм (50·10 -3 мм); тогда =16/(50·10 -3 ) 2 =6400, а число частиц (n) должно быть в интервале 5120>n>1280.

На заранее подготовленную поверхность (после химического травления) одной из деталей был нанесен слой МС методом газопламенного напыления (число частиц n=4348). После этого в течение 36 часов проводилась контактная точечная сварка изделия. Неразрушающий рентгеновский контроль сварного соединения показал четко выраженное распределение МС по периферии сварной точки и позволил определить диаметр литого ядра (dя 4 мм). Результаты разрушающего контроля сварного соединения подтвердили соответствие диаметра точки значениям, полученным с использованием неразрушающего метода контроля.

Пример 2. Перед сваркой листов из стали 12Х18Н10Т толщиной 1+1 мм на поверхность одной из деталей был нанесен слой вольфрама (число частиц n=4678, расчетное соотношение 8000>n>2000) методом плазменного напыления. Время напыления каждой частицы выбиралось меньше 0,1 с. Время между операциями нанесения МС и сваркой не превышало 8 часов.

Проведенный неразрушающий рентгеновский контроль показал четкую картину распределения МС по границе сварной точки. После точечной контактной сварки образцов была получена качественная рентгенограмма сварного соединения, значение диаметра сварной точки соответствовало значению, полученному после разрушения образца.

Пример 3. Для сварки пластин из сплава ОТ4 толщиной 0,8+0,8 мм расчетное соотношение количества частиц составляет 5917>n>1479. На поверхность одной из деталей методом газопламенного напыления был нанесен слой МС из WC+WC2 (число частиц n=4280). Сварка деталей проводилась в течение 8 часов после напыления.

Рентгенографический контроль сварного соединения позволил получить четкую картину сварной точки и определить ее диаметр. Разрушающий контроль соединения подтвердил полученные значения.

Способ неразрушающего контроля сварных соединений, выполненных точечной, или рельефной, или шовной контактной сваркой, включающий напыление на поверхность, по крайней мере, одной из свариваемых деталей порошка материала-свидетеля, сварку и последующий контроль, отличающийся тем, что в качестве порошка материала-свидетеля используют порошок из тугоплавкого материала с более высокой плотностью, чем плотность материала свариваемых деталей, время напыления устанавливают не превышающим 0,1 с, а сварку осуществляют в течение 48 ч с момента напыления порошка материала-свидетеля на свариваемую деталь при соблюдении следующего соотношения:
0,8 >n>0,2 ,
где =(dя/dч) 2 ;
dя — диаметр ядра сварной точки, который выбирают в зависимости от наименьшей толщины сварного соединения, мм;
dч — диаметр частиц напыляемого порошка, мм;
n — число частиц порошка, приходящихся на площадь, ограниченную диаметром ядра сварной точки.

Патент на изобретение сварка

Патентообладатель: Общество с ограниченной ответственностью «Альтерпласт»
Авторы: Козлов Олег Владимирович, Самоделко Александр Михайлович
Международная патентная классификация: B29C 65/18 (2006.01), B29C 65/56 (2006.01), F16L 13/02 (2006.01)
Дата подачи заявки: 31.01.2012
Дата публикации сведений о выдаче патента (выдача патента): 10.01.2014

Изобретение относится к используемым в строительстве методам и средствам для сооружения систем водоснабжения, кондиционирования и отопления, в том числе для сооружения теплого пола, канализации, различных трубопроводных систем специального назначения, а конкретно к способу соединения сваркой трубы, как правило, тонкостенной, с муфтовым элементом, изготовленных из термопластичного материала, а также к узлу сварного соединения трубы и муфтового элемента, полученному этим способом.

Под муфтовым элементом в смысле настоящего изобретения понимается участок элемента трубопроводной арматуры или соединительной детали, который имеет внутреннюю цилиндрическую поверхность, в зоне сопряжения с которой наружной поверхности конца подсоединяемой трубы, при сопряжении этих поверхностей с предварительным подплавлением на них термопластичного материала, образуется зона сварки трубы и муфтового элемента. Такой муфтовый элемент могут иметь различные фитинги, в том числе соединительные муфты, угольники, тройники, а также вентили, краны, клапаны, фильтры, регуляторы различного назначения и тому подобное. Перечисленные детали и узлы могут быть изготовлены полностью из термопластичного материала или частично. Подключаемые трубы также могут быть изготовлены из сплошного термопластичного материала, либо трубы могут иметь один или несколько промежуточных слоев, в частности включать промежуточный слой из алюминиевого сплава или из сополимера этилвинилового спирта.

Сварка изготовленных из термопластичного материала трубы и муфтового элемента предусматривает проведение следующих операций:
— одновременный нагрев участка наружной поверхности трубы и участка внутренней поверхности муфтового элемента с использованием закрепленных на нагревателе сварочных насадок до расплавления термпопластичного материала на поверхностях указанных участков;
— снятие конца трубы и муфтового элемента со сварочных насадок и их сопряжение друг с другом упомянутыми участками с расплавленным на поверхностях термопластичным материалом путем вставки конца трубы внутрь полости муфтового элемента;
— заключительную выдержку соединенных конца трубы и муфтового элемента до отверждения расплавленного термпопластичного материала с образованием зоны сварки муфтового элемента с концом трубы (EA 014398 B1, МПК B29C 65/18, 2010).

Этим методом легко сваривают изготовленные из различного вида полипропилена муфтовые элементы и трубы, в том числе трубы с промежуточными слоями из алюминиевого сплава или из сополимера этилвинилового спирта, иные многослойные трубы и муфтовые элементы, изготовленные на основе иных термопластичных полимерных материалов, которые могут свариваться описанным выше методом.

Для сплошных труб используют муфтовые элементы, имеющие отверстие с внутренним радиальным выступом, который при сварке также оплавляется и в него упирается оплавленный торец привариваемой трубы. Для многослойных труб могут применяться муфтовые элементы, имеющие внутри отверстия сложный выступ, образующий обращенную наружу кольцевую канавку (RU 2380603 C1, МПК F16L 13/00, 2010). В этом случае используются для сварки нагревающие насадки, позволяющие оплавить конец трубы снаружи, внутри и на торце, а фитинг – по внутренней поверхности и все поверхности указанной кольцевой канавки, в которую затем вводится торец трубы. Использование муфтовых элементов такой конструкции существенно снижает проходное сечение трубопровода, поэтому их использование не целесообразно.

Наряду с трубами на основе полипропилена широко используются трубы, которые полностью изготовлены из сшитого полиэтилена (PEX), либо из этого материала изготавливается лишь внутренний слой. Трубы из сшитого полиэтилена отличают высокие эксплуатационные свойства (срок службы, гибкость, прочность, термостойкость), однако соединение таких труб осуществляется с использованием механических фитингов, зажимающих механически конец такой трубы, поскольку сварка труб из сшитого полиэтилена невозможна.

В настоящее время нашла использование иная разновидность полиэтилена повышенной термостойкости (материал имеет обозначение: PE-RT Polyethylene of Raised Temperature resistance) для труб, соединителей и трубопроводной арматуры систем горячего и холодно водоснабжения и отопления. Этот полиэтилен повышенной термостойкости является фактически классическим термопластом, который легко сваривается. Изготавливаемые из этого полиэтилена трубы может отличать малая толщина стенки. Использование для сварки таких труб из полиэтилена повышенной термостойкости с муфтовыми элементами сварочных насадок, применяющихся для сварки трубопроводов из материалов на основе полипропилена и значительно распространенных, обладает недостатком.

При осуществлении сварки происходит деформация трубы в зоне сварки (сварочного пояска) и изменение геометрии проходного сечения. Возникает дефект сварки, приводящий либо к полному или частичному перекрытию проходного канала трубы, либо к недостаточно прочному сварному соединению трубы и муфтового элемента. Аналогичным недостатком обладает сварка тонкостенных труб из полиэтилена низкого давления или из полипропилена.

Известен метод сварки труб, устраняющий эту проблему, при котором концы двух соединяемых труб одеваются на металлическую тонкостенную гильзу. На гильзу может одеваться конец трубы и фитинг. Затем поверх стыка формируется охватывающая муфта, в том числе из термопластичного материала, соответствующего материалу соединяемых труб (GB 794833 A, МПК B29C65/00, 1956). Этот известный метод не может быть использован в силу того, что он не соответствует используемым в настоящее время конструктивным особенностям труб, особенно многослойных, муфтовых элементов, не является преемственным для использования инструментов, широко применяющихся для сварки труб и муфтовых элементов, изготовленных из термопластов на основе полипропилена. Следует также отметить его сложность и недостаточную технологичность.

Технический результат изобретения заключается в расширении арсенала методов и средств для сварки трубы с муфтовым элементом, изготовленных из термопластичного материала, в частности из полиэтилена повышенной термостойкости, полиэтилена низкого давления или из полипропилена. Эти метод и средства позволяют обеспечить сварку муфтового элемента с тонкостенной трубой, имеющей толщину стенки в пределах 1,5 – 3,0 мм у труб наиболее распространенных типоразмеров с наружным диаметром 16 или 20 мм, а также стенку большей толщины при соответственно большем наружном диаметре. При этом обеспечивается высокая сплошность и однородность зоны сварки, практически исключается сужение проходного сечения трубопровода в указанной зоне сварки, могут быть использованы инструменты, применяющиеся для сварки трубопроводных изделий, изготовленных из термопластов на основе полипропилена.

Достижение технического результата изобретения обеспечивает способ соединения сваркой трубы с муфтовым элементом, изготовленных из термопластичного материала, включающий:
— установку в привариваемый конец трубы гильзы, выполненной тонкостенной в виде отрезка трубы с отогнутым наружу буртиком по одному из торцов, высота которого не превышает толщину трубы, и изготовленную из материала, сохраняющего несущие свойства при температуре, превышающей температуру плавления термопластичного материала трубы и муфтового элемента, до упора буртиком в торец конца трубы;
— одновременный нагрев участка наружной поверхности трубы и участка внутренней поверхности муфтового элемента с использованием закрепленных на нагревателе сварочных насадок до расплавления термпопластичного материала на поверхностях указанных участков;
— последующее снятие конца трубы и муфтового элемента со сварочных насадок и их сопряжение друг с другом упомянутыми участками с расплавленным на поверхностях термопластичным материалом путем установки конца трубы внутрь полости муфтового элемента;
— заключительную выдержку соединенных конца трубы и муфтового элемента до отверждения расплавленного термпопластичного материала с образованием зоны сварки муфтового элемента с концом трубы.

В отличие от известной технологии, описанной выше, способ в соответствии с изобретением предусматривает установку гильзы указанной конструкции в заданное положение.

В предпочтительном варианте осуществления изобретения предварительно на трубе делают отметку глубины введения ее конца внутрь муфтового элемента, а установку конца трубы внутрь полости муфтового элемента осуществляют на глубину, соответствующую указанной предварительно сделанной отметке.

В наилучшем варианте осуществления изобретения используют гильзу, имеющую большую длину, чем длина зоны сварки муфтового элемента с концом трубы.

Возможен вариант, когда используют гильзу, в средней части боковой поверхности которой снаружи выполнена кольцевая канавка с расположенным в ней уплотнительным кольцом.

Возможен вариант, когда на торец трубы одевают вставку из термопластичного материала в форме кольца, имеющего поперечное Г-образное сечение, с размещением трубы внутри угловой полости вставки.

В соответствии с изобретением с муфтовым элементом можно соединить сваркой трубу, имеющую промежуточный слой из алюминиевого сплава или из сополимера этилвинилового спирта.

Соединяемые труба и муфтовый элемент могут быть изготовлены из материала, выбранного из группы, включающей полиэтилен повышенной термостойкости, полиэтилен низкого давления, полипропилен. Соответственно, труба, муфтовый элемент и вставка, когда она используется, изготовлены из одного и того же термопластичного материала. Толщина соединяемой с муфтовым элементом трубы может лежать в диапазоне 1,5-3 мм.

Можно использовать гильзу, которая изготовлена из материала, выбранного из группы, включающей сталь, алюминиевый сплав, медный сплав. Гильза может быть изготовлена из полимерного конструкционного материала на основе полисульфона. Можно использовать гильзу, которая изготовлена с толщиной, лежащей в диапазоне от 0,05до 3 мм.

В соответствии с описанным способом узел сварного соединения трубы с муфтовым элементом, изготовленных из термопластичного материала, дополнительно включает гильзу, выполненную в виде отрезка тонкостенной трубы с отогнутым наружу буртиком по одному из торцов, высота которого не превышает толщину трубы, и изготовленную из материала, сохраняющего несущие свойства при температуре, превышающей температуру плавления термопластичного материала трубы и муфтового элемента. Гильза вставлена внутрь конца трубы до упора буртиком в его торец, а конец трубы вставлен внутрь муфтового элемента с образованием на участке сопряжения части внутренней поверхности муфтового элемента с частью наружной поверхности трубы зоны сварки муфтового элемента с концом трубы. При этом длина гильзы больше длины указанной зоны сварки.

В отличие от известного узла соединения, где для соединения деталей из термопластичного материала использована гильза, изобретение характеризуется конструкцией соединяемых элементов, расположением зоны сварки, конструкцией гильзы и особенностями ее установки.

Смотрите так же:  Алименты на 2 детей от разного брака

Узел соединения в частных случаях осуществления изобретения характеризуется согласно описанному выше способу следующими конструктивными особенностями:
— в средней части боковой поверхности гильзы снаружи может быть выполнена кольцевая канавка, в которой расположено уплотнительное кольцо;
— узел может быть снабжен вставкой из термопластичного материала в форме кольца, установленного между торцом трубы и боковой поверхностью внутреннего радиального выступа муфтового элемента, с поверхностями которых вставка сопряжена с образованием дополнительной зоны сварки;
— труба может иметь промежуточный слой из алюминиевого сплава или из сополимера этилвинилового спирта;
— труба и муфтовый элемент могут быть изготовлены из материала, выбранного из группы, включающей полиэтилен повышенной термостойкости, полиэтилен низкого давления, полипропилен;
— труба, муфтовый элемент и вставка могут быть изготовлены из материала, выбранного из группы, включающей полиэтилен повышенной термостойкости, полиэтилен низкого давления, полипропилен;
— толщина трубы может лежать в диапазоне 1,5 – 3,0 мм.
— гильза может быть изготовлена из материала, выбранного из группы, включающей сталь, алюминиевый сплав, медный сплав;
— гильза может быть изготовлена из полимерного конструкционного материала на основе полисульфона;
— толщина гильзы может лежать в диапазоне от 0,05 до 3 мм.

Возможность осуществления изобретение поясняется примером конкретного выполнения, который проиллюстрирован графическими материалами.

На фиг.1 показан продольный разрез узла сварного соединения трубы с муфтовым элементом.

На фиг.2 показан продольный разрез гильзы.

На фиг.3 показан продольный разрез узла сварного соединения трубы с муфтовым элементом, гильза в котором в средней части боковой поверхности снаружи выполнена с кольцевой канавкой, в которой расположено уплотнительное кольцо.

На фиг.4 показан продольный разрез конца трубы, внутрь которой вставлена гильза, при этом на торец трубы одета вставка из термопластичного материала в форме кольца.

Узел сварного соединения (фиг.1) трубы 1 с муфтовым элементом 2, являющимся в конкретном частном примере частью соединительной муфты 3 с внутренним радиальным выступом 4, изготовленных из термопластичного материала, дополнительно включает гильзу 5, выполненную тонкостенной в виде отрезка трубы с отогнутым наружу буртиком 6 (фиг.1, 2) по одному из торцов, высота которого не превышает толщину трубы 1, и изготовленную из материала, сохраняющего несущие свойства при температуре, превышающей температуру плавления термопластичного материала трубы 1 и муфтового элемента 2.

Гильза 5 вставлена внутрь конца трубы 1 до упора буртиком 6 в его торец 7, а труба 1 этим концом вставлена внутрь муфтового элемента 2 с образованием на участке 8 сопряжения части внутренней поверхности муфтового элемента 2 с частью наружной поверхности трубы 1 зоны сварки муфтового элемента 2 с концом трубы 1. Длина гильзы 5 больше длины указанной зоны (8) сварки.

Как показано на фиг.3 при сварке многослойной трубы 9 (многослойность трубы 9 на фиг.3 не отражена), снаружи в средней части боковой поверхности гильзы 10 выполнена кольцевая канавка 11, в которой расположено уплотнительное кольцо 12. С аналогичной целью, как показано на фиг.4, то есть для предотвращения расслаивания многослойной трубы 13 (многослйность трубы 13 на фиг.4 также не отражена) узел снабжен вставкой 14 из термопластичного материала в форме кольца между торцом трубы 13 и боковой поверхностью внутреннего радиального выступа муфтового элемента (на фиг.1 соответствуют, соответственно, позициям 4, 2), с поверхностями которых вставка 14 сопряжена с образованием дополнительной зоны сварки (на чертежах не показана), которая укрывает буртик 15 гильзы 16.

Как указано выше труба (9, 13) может быть выполнена с промежуточным слоем из алюминиевого сплава или из сополимера этилвинилового спирта. Может быть обеспечена сварка многослойной трубы иной конструкции промежуточных слоев. Сварка обеспечивается, преимущественно, трубы с толщиной в диапазоне 1,5 — 3 мм и муфтового элемента, изготовленных из полиэтилена повышенной термостойкости. Может быть осуществлена сварка трубы и муфтового элемента, изготовленных из полиэтилена низкого давления или из полипропилена. При использовании вставки 14 она изготавливается из того же материала, что и свариваемые труба и муфтовый элемент. Могут быть сварены труба и муфтовый элемент из иных термопластичных материалов, в том числе в случае, когда подключаемая труба не характеризуется малой толщиной стенки.

Гильза (5, 10, 16) изготовлена, преимущественно, из латуни, но для ее изготовления могут быть использованы сталь, алюминиевый сплав, иной медный сплав, а также тугоплавкий полимерный конструкционный материал на основе полисульфона (например, полиариленэфир-сульфон, полиалкиленсульфон, полиэфирсульфон). Гильза (5, 10, 16) может, в зависимости от использованного материала, иметь толщину от 0,05 до 1 мм. Может быть использована гильза большей толщины при соответствующем размере свариваемых деталей.

Технология (способ) соединения сваркой трубы с муфтовым элементом, изготовленных из термопластичного материала, позволяющая получить описанный выше узел соединения, предусматривает проведение следующих операций:
— установку в привариваемый конец трубы (1, 9, 13) гильзы (5, 10, 16), выполненной как описано выше, до упора буртиком 6 в торец конца трубы (1, 9, 13);
— одновременный нагрев участка наружной поверхности трубы (1, 9, 13) и участка внутренней поверхности муфтового элемента (2) с использованием закрепленных на нагревателе сварочных насадок до расплавления термпопластичного материала на поверхностях указанных участков;
— последующее снятие конца трубы (1, 9, 13) и муфтового элемента (2) со сварочных насадок и их сопряжение друг с другом упомянутыми участками с расплавленным на поверхностях термопластичным материалом путем установки конца трубы (1, 9, 13) внутрь полости муфтового элемента (2);
— заключительную выдержку соединенных конца трубы (1, 9, 13) и муфтового элемента (2) до отверждения расплавленного термпопластичного материала с образованием зоны (8) сварки муфтового элемента (2) с концом трубы (1, 9, 13).

Перед выполнением этих операций предварительно на трубе (1, 9, 13) может быть сделана отметка глубины введения ее конца внутрь муфтового элемента (2), а при проведении операции установки конца трубы (1, 9, 13) внутрь полости муфтового элемента (2), установку конца трубы (1, 9, 13) осуществляют на глубину, соответствующую указанной предварительно сделанной отметке.

Изобретение не исчерпывается представленным выше примером осуществления. Возможны также иные, лежащие в пределах патентных притязаний, конкретные формы конструктивной реализации изобретения, спроектированные с его использованием и обычных инженерных знаний. Также может быть дополнена дополнительными известными операциями технология соединения сваркой трубы (1, 9, 13) с муфтовым элементом (2).

1. Способ соединения сваркой трубы с муфтовым элементом, изготовленных из термопластичного материала, включающий установку в привариваемый конец трубы гильзы, выполненной тонкостенной в виде отрезка трубы с отогнутым наружу буртиком по одному из торцов, высота которого не превышает толщину трубы, и изготовленную из материала, сохраняющего несущие свойства при температуре, превышающей температуру плавления термопластичного материала трубы и муфтового элемента, до упора буртиком в торец конца трубы, одновременный нагрев участка наружной поверхности трубы и участка внутренней поверхности муфтового элемента с использованием закрепленных на нагревателе сварочных насадок до расплавления термпопластичного материала на поверхностях указанных участков, последующее снятие конца трубы и муфтового элемента со сварочных насадок и их сопряжение друг с другом упомянутыми участками с расплавленным на поверхностях термопластичным материалом путем установки конца трубы внутрь полости муфтового элемента, заключительную выдержку соединенных конца трубы и муфтового элемента до отверждения расплавленного термпопластичного материала с образованием зоны сварки муфтового элемента с концом трубы.

2. Способ по п.1, отличающийся тем, что предварительно на трубе делают отметку глубины введения ее конца внутрь муфтового элемента, а установку конца трубы внутрь полости муфтового элемента осуществляют на глубину, соответствующую указанной предварительно сделанной отметке.

3. Способ по п.1, отличающийся тем, что используют гильзу, имеющую большую длину, чем длина зоны сварки муфтового элемента с концом трубы.

4. Способ по п.1, отличающийся тем, что используют гильзу, в средней части боковой поверхности которой снаружи выполнена кольцевая канавка с расположенным в ней уплотнительным кольцом.

5. Способ по п.1, отличающийся тем, что на торец трубы одевают вставку из термопластичного материала в форме кольца, имеющего поперечное Г-образное сечение, с размещением трубы внутри угловой полости вставки.

6. Способ по п.5, отличающийся тем, что с муфтовым элементом соединяют сваркой трубу, имеющую промежуточный слой из алюминиевого сплава или из сополимера этилвинилового спирта.

7. Способ по п.1, отличающийся тем, что соединяемые труба и муфтовый элемент изготовлены из материала, выбранного из группы, включающей полиэтилен повышенной термостойкости, полиэтилен низкого давления, полипропилен.

8. Способ по п.5, отличающийся тем, что труба, муфтовый элемент и вставка изготовлены из материала, выбранного из группы, включающей полиэтилен повышенной термостойкости, полиэтилен низкого давления, полипропилен.

9. Способ по п.1, отличающийся тем, что толщина соединяемой с муфтовым элементом трубы лежит в диапазоне 1,5-3 мм.

10. Способ по любому из пунктов 1 — 8, отличающийся тем, что используют гильзу, которая изготовлена из материала, выбранного из группы, включающей сталь, алюминиевый сплав, медный сплав.

11. Способ по любому из пунктов 1 — 8, отличающийся тем, что используют гильзу, которая изготовлена из полимерного конструкционного материала на основе полисульфона.

12. Способ по любому из пунктов 1 — 8, отличающийся тем, что используют гильзу, которая изготовлена с толщиной, лежащей в диапазоне от 0,05до 3 мм.

13. Узел сварного соединения трубы с муфтовым элементом, изготовленных из термопластичного материала, включающий гильзу, выполненную в виде отрезка тонкостенной трубы с отогнутым наружу буртиком по одному из торцов, высота которого не превышает толщину трубы, и изготовленную из материала, сохраняющего несущие свойства при температуре, превышающей температуру плавления термопластичного материала трубы и муфтового элемента, при этом гильза вставлена внутрь конца трубы до упора буртиком в его торец, а конец трубы вставлен внутрь муфтового элемента с образованием на участке сопряжения части внутренней поверхности муфтового элемента с частью наружной поверхности трубы зоны сварки муфтового элемента с концом трубы, причем длина гильзы больше длины указанной зоны сварки.

14. Узел по п.13, отличающийся тем, что в средней части боковой поверхности гильзы снаружи выполнена кольцевая канавка, в которой расположено уплотнительное кольцо.

15. Узел по п.13, отличающийся тем, что он снабжен вставкой из термопластичного материала в форме кольца, установленного между торцом трубы и боковой поверхностью внутреннего радиального выступа муфтового элемента, с поверхностями которых вставка сопряжена с образованием дополнительной зоны сварки.

16. Узел по п.14, отличающийся тем, что он предназначен для соединения трубы, имеющей промежуточный слой из алюминиевого сплава или из сополимера этилвинилового спирта.

17. Узел по п.15, отличающийся тем, что он предназначен для соединения трубы, имеющей промежуточный слой из алюминиевого сплава или из сополимера этилвинилового спирта.

18. Узел по любому из пунктов 13 — 17, отличающийся тем, что он предназначен для соединения трубы с муфтовым элементом, изготовленных из материала, выбранного из группы, включающей полиэтилен повышенной термостойкости, полиэтилен низкого давления, полипропилен.

19. Узел по п.15, отличающийся тем, что он предназначен для соединения трубы с муфтовым элементом с использованием вставки, изготовленных из материала, выбранного из группы, включающей полиэтилен повышенной термостойкости, полиэтилен низкого давления, полипропилен.

20. Узел по любому из пунктов 13 — 17, 19, отличающийся тем, что он предназначен для соединения трубы, толщина которой лежит в диапазоне 1,5-3 мм.

21. Узел по любому из пунктов 13 — 17, 19, отличающийся тем, что гильза изготовлена из материала, выбранного из группы, включающей сталь, алюминиевый сплав, медный сплав.

22. Узел по любому из пунктов 13 — 17, 19, отличающийся тем, что гильза изготовлена из полимерного конструкционного материала на основе полисульфона.

23. Узел по любому из пунктов 13 — 17, 19, отличающийся тем, что толщина гильзы лежит в диапазоне от 0,05 до 3 мм.

Изобретение относится к строительству. Технический результат заключается в расширении арсенала методов и средств для сварки трубы с муфтовым элементом, изготовленных из термопластичного материала, в частности из полиэтилена повышенной термостойкости, полиэтилена низкого давления или из полипропилена. Обеспечивается сварка муфтового элемента с тонкостенной трубой, имеющей толщину стенки в пределах 1,5 – 3,0 мм у труб наиболее распространенных типоразмеров с наружным диаметром 16 или 20 мм, а также стенку большей толщины при соответственно большем наружном диаметре. Обеспечивается высокая сплошность и однородность зоны сварки, практически исключается сужение проходного сечения трубопровода в указанной зоне сварки, могут быть использованы инструменты, применяющиеся для сварки трубопроводных изделий, изготовленных из термопластов на основе полипропилена. Способ соединения предусматривает: установку в привариваемый конец трубы 1 гильзы 5 до упора буртиком 6 в его торец; одновременный нагрев участка наружной поверхности трубы 1 и участка внутренней поверхности муфтового элемента 2 с использованием закрепленных на нагревателе сварочных насадок до расплавления термпопластичного материала на поверхностях указанных участков; последующее снятие конца трубы 1 и муфтового элемента 2 со сварочных насадок и их сопряжение друг с другом упомянутыми участками с расплавленным на поверхностях термопластичным материалом путем установки конца трубы 1 внутрь полости муфтового элемента 2; заключительную выдержку соединенных конца трубы 1 и муфтового элемента 2 до отверждения расплавленного термпопластичного материала с образованием зоны 8 сварки муфтового элемента 2 с концом трубы 1. Узел сварного соединения трубы 1 с муфтовым элементом 2, изготовленных из термопластичного материала, включает гильзу 5, выполненную в виде отрезка тонкостенной трубы с отогнутым наружу буртиком 6 по одному из торцов, высота которого не превышает толщину трубы 1, и изготовленную из материала, сохраняющего несущие свойства при температуре, превышающей температуру плавления термопластичного материала трубы 1 и муфтового элемента 2. Длина гильзы 5 больше длины зоны 8. 2 с. и 21 з.п.ф-лы, 4 ил.